Exchange and correlation in molecular wire conductance: nonlocality is the key.
نویسندگان
چکیده
We study real-time electron dynamics in a molecular junction with a variety of approximations to the electronic structure, toward the ultimate aim of determining what ingredients are crucial for the accurate prediction of charge transport. We begin with real-time, all electron simulations using some common density functionals that differ in how they treat long-range Hartree-Fock exchange. We find that the inclusion or exclusion of nonlocal exchange is the dominant factor determining the transport behavior, with all semilocal contributions having a smaller effect. In order to study nonlocal correlation, we first map our junction onto a simple Pariser-Parr-Pople (PPP) model Hamiltonian. The PPP dynamics are shown to faithfully reproduce the all electron results, and we demonstrate that nonlocal correlation can be readily included in the model space using the generator coordinate method (GCM). Our PPP-GCM simulations suggest that nonlocal correlation has a significant impact on the I-V character that is not captured even qualitatively by any of the common semilocal approximations to exchange and correlation. The implications of our results for transport calculations are discussed.
منابع مشابه
اثر چرخش گشتاور مغناطیسی نقص ها روی رسانش وابسته به اسپین یک نانو سیم فرومغناطیس
In this paper, we calculate the spin-dependent conductance of ferromagnetic quantum wire in the presence of one or two defects by using Green's function method at the tight-binding approach. We study the effect of rotation of defect magnetic moment on the system conductance. The results show that in the magnetic wire, independent of existence or absence of defect, the allowed energy region shi...
متن کاملمحاسبه رسانندگی و زمان مشخصه تونلزنی الکترون از پیوندگاه فلز – مولکول (پلی استیلن) در یک سیم مولکولی
In this paper, on the basis of tight-binding model and a generalized Green- function method as well as Lanczos algorithm procedure, the effects of the metal-molecule coupling(MMC) strength on the electronic transmission through a metal-single molecule-metal(MMM) system is investigated. Using the Landauer formalism we study some of the significant conductance properties of this system as a mol...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملConductance in quantum wires by three quantum dots arrays
A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 131 3 شماره
صفحات -
تاریخ انتشار 2009